If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+3-4z=0
a = 1; b = -4; c = +3;
Δ = b2-4ac
Δ = -42-4·1·3
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2}{2*1}=\frac{2}{2} =1 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2}{2*1}=\frac{6}{2} =3 $
| 7x+6-3x=-5x-13+x | | 3(3+7z)= | | 2x+7=5x−17 | | 1=-b+-9 | | 4w+2(w+6)=-30 | | 3(1+5u)= | | 150000*x=2.46*8.31*273.15 | | C^2+6=5c | | -5=b/2-8 | | 4x/1=73 | | 6d-211=2d-213 | | 6u+5(u-2)=1 | | 2t–5=3 | | 22x+4=114 | | x+12+71=3x+1 | | 11=-3w+7w-21 | | 2(2x-7)=10-2x | | 150000*0.04=x*8.31*293.15 | | 3/2x+3=4/5x+8 | | 19n=30 | | 15y^2+1-8y=0 | | 74x=2x+10 | | x−52=1 | | 8x=3x=20 | | -12x-144=-9-63x | | 5x+12=5(x+2x+10=4x+2 | | 3k+2=k+4 | | 141-u=194 | | 3=2b+1 | | -3x-4(-2x+4)=-56 | | 81=9(n+2) | | T=125t+8 |